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Algorithm for normal random numbers
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We propose a simple algorithm for generating normally distributed pseudorandom numbers. The algorithm
simulatesN molecules that exchange energy among themselves following a simple stochastic rule. We prove
that the system is ergodic, and that a Maxwell-like distribution that may be used as a source of normally
distributed random deviates follows in theN→` limit. The algorithm passes various performance tests,
including Monte Carlo simulation of a finite two-dimensional Ising model using Wolff’s algorithm. It only
requires four simple lines of computer code, and is approximately ten times faster than the Box-Muller
algorithm.@S1063-651X~99!04409-8#

PACS number~s!: 02.70.Lq, 02.90.1p
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I. INTRODUCTION

Pseudorandom number~PRN! generation is a subject o
considerable current interest@1#. Deterministic algorithms
lead to undesirable correlations, and some of them have b
shown to give rise to erroneous results for random-w
simulations@2#, Monte Carlo~MC! calculations@3,4#, and
growth models@5#. Most of the interest has been focused
PRN’s with uniform distributions. Less attention has be
paid to nonuniform PRN generation.

Sequences of random numbers with Gaussian probab
distribution functions~PDF’s! are needed to simulate o
computers Gaussian noise that is inherent to a wide var
of natural phenomena@6#. Their usefulness transcends phy
ics. For instance, numerical simulations of economic syste
that make use of so-calledgeometricBrownian models~in
which noise is multiplicative! also need a source of normal
distributed PRN’s@7#. There are several algorithms availab
for PRN’s with Gaussian PDF’s@8#. Some, such as the Box
Muller’s algorithm, require an input of uniform PRN’s, an
their output often suffers from the pitfalls of the latter@9#.
Robustness is therefore a relevant issue. In addition, B
Muller’s algorithm is slow and can consequently consu
significant fractions of computer-simulation times@10#. The
comparison method demands several uniform PRN’s
normal PRN, and is therefore also slow@11#. Use of tables
@12# is not a very accurate method. Algorithms that are
lated, but not equivalent, to the one we propose here h
been published@10,13#, but they are somewhat cumbersom
to use. In addition, no proof of their validity has been give

We propose here an algorithm for the generation of n
mally distributed PRN’s that is quite simple and fast. It is
stochastic caricature of a closed classical system ofN par-
ticles. Their velocities provide a source of PRN’s. We pro
that, for any initial state, their PDF becomes Maxwellian
the N→` limit, after an infinite number of two-particle
‘‘collisions’’ takes place. To this end, we first prove that o
system is ergodic@14,15#. The proof is not exceedingly dif
ficult because our system is not deterministic. We also st
PRE 601063-651X/99/60~3!/3361~5!/$15.00
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its output as a function ofN, and establish useful criteria fo
its implementation. Correlation test results are also repor

II. ALGORITHM

A. Motivation

Consider real numbersv1 ,v2 , . . . ,vN , placed inN com-
puter registers, in analogy to the velocities ofN particles that
make up a closed classical system in one dimension. Pai
registersı and, say, selected at random without bias, are
‘‘interact’’ somehow, conserving the kinetic energy, that
quantityv i

21v j
2 . The motivation for imposing this conserva

tion rule comes from the foundations of statistical physi
The statistical distribution function of a system~say, any one
of N particles! in equilibrium with a macroscopic system
an exponential function of the additive constants of the m
tion ~the kinetic energy in our case! if the two systems are
statistically uncorrelated@16#. By analogy with the approach
to equilibrium that is believed to take place in statistic
physics, we therefore expect that a sufficient number of
erations will lead to a Maxwellian~i.e., Gaussian! PDF of
register values, from which the desired PRN’s may
drawn. ~See, also Ref.@10#.! We define below the simples
interaction we can think of in order that~i! implementation
on a computer be very fast, and~ii ! that we may be able to
prove that a Gaussian PDF does indeed ensue.

B. Procedure

Before the algorithm is implemented, allN registers must
be initialized to, say,v ı51 for all ı satisfying 1<ı<N, or
all v ı may be read from a set ofN register values saved from
a previous computer run, which we assume to fulfill(v ı

2

5N. Let U(1,N) and Uı(1,N) be unbiased integer random
variables, both in the interval@1,N#, except thatUı cannot
equalı. The algorithm follows:

ı5U~1,N!; 5Ui~1,N!, ~2.1!

v ı←~v ı1v !/A2, ~2.2!
3361 © 1999 The American Physical Society
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v ←2v ı1A2v  . ~2.3!

The updated value ofv ı , from Eq.~2.2!, is used in Eq.~2.3!.
After an initial warmupphase~see below!, v ı andv  may be
drawn each time transformations~2.1!–~2.3! are applied.
These are the two desired PRN’s, with^v ı&50 and ^v ı

2&
51 for all ı. Their PDF becomes Gaussian~see below! in the
N→` limit.

Transformation~2.1!–~2.3! may be thought of as a rota
tion of 6p/4 with respect to a randomly chosenı plane
(1p/4 and2p/4 are for the two possible index ordering
ı andı, respectively!.

Numerical evidence that the system becomes nonerg
if ←Ui@1,N# is replaced by5ı11 modN in Eq. ~2.1! is
easily obtained. This remark may help to place the sign
cance of the proof that follows into proper perspective.

III. PROOF

Let Pn(v) be the probability density at v
5(v1 ,v2 , . . . ,vN), after transformation~2.1!–~2.3! has
been appliedn times. We prove below, in three stages, th
Pn(v)→constantover spherical surfaceSN21, if N>3, in
the n→` limit. We first provePn(v)↔Pn(u) asn→` if v
andu are related.@From here on, we say that pointsv andu
are related if succesive transformations~2.1!–~2.3! of v can
lead tou.# We then prove that the system’s ‘‘orbit’’ cover
SN21 densely@that is, that any pointvPSN21 can be brought
arbitrarily close to any other pointuPSN21 by applying
transformations~2.1!–~2.3! to v a sufficient number of
times#. Then, the desired result follows easily.

To start the proof, let kernelK(v,v8) be defined by
Pn11(v)5*K(v,v8)Pn(v8) dv8, and let

Fn[E $Pn11
2 ~v!2Pn

2~v!%dv. ~3.1!

Note first thatFn,0 implies thatPn11(v) is more uniform
than Pn(v), in the sense that*dv @Pn11(v)2 P̄#2,*dv
@Pn(v)2 P̄#2, where P̄51/*dv. It follows from the defini-
tion of K(v,v8) that

Fn5E dvH F E dv1K~v,v1!Pn~v1!G2

2Pn
2~v!J . ~3.2!

Making use of the detailed balance condition,K(v,v8)
5K(v8,v), that our system satisfies, and the relation* dv
K(v,v8)51, Eq. ~3.2! can be cast into

Fn52
1

2E dvE dv1E dv2 Q~v,v1 ,v2!, ~3.3!

where, Q5K(v,v1)K(v,v2)@Pn(v1)2Pn(v2)#2. Therefore,
in the n→` limit, Pn(v) becomes constant over each set
SN21 within which any two pointsv,u are related.

We next prove that the orbit of any pointp in SN21 under
the action of the transformation group defined by Eqs.~2.1!–
~2.3! covers the sphere densely. LetHN denote the subgroup
of SO(N) corresponding to transformations~2.1!–~2.3!. To
show that the orbitHN(p) of anyp in SN21 is dense inSN21,
we have to prove that for anyq in SN21 and any real numbe
ic

-

t

e.0 there exists an elementh in HN such thath(p) is within
distancee of q, that is, thatd„h(p),q…,e. For this purpose,
it is sufficient to prove thatHN is dense inSO(N), by which
we mean that for anyg in SO(N) and any real numbere
.0 there exists an elementh in HN such thatdSO(N)(g,h)
,e, where the distancedSO(N)(g,h) between elementsg and
h is defined to be the supreme of the distances onSN21 ,
d„g(p),h(p)…, for p varying in SN21. To show that this is
indeed sufficient, letg in SO(N) and h in HN be such that
q5g(p) and dSO(N)(g,h),e. The desired relation
d„h(p),q…,e, then follows from the definition of
dSO(N)(g,h).

We now prove forN53 thatHN is dense inSO(N). The
proof is extended to higher dimensions by induction. No
first that H3 does not belong to the set offinite rotation
groups in three dimension@17#, and is therefore an infinite
group. Let groupSO(3) be covered by disks of radiuse/2
each. A finite number of them is sufficient, sinceSO(3) is
compact@18#. It follows that there must be at least one di
with two elements ofH3 in it, sinceH3 has an infinite num-
ber of elements. Let these two elements ber and s, and let
g(u,e) be elementrs21 of H3, which is a rotation by an
angle smaller thane about some undeterminedu axis. We
will build elements ofH3 that are as arbitrarily close to an
given rotation. To this end, it is sufficient to show that it c
be done for a set of infinitesimal generators of rotations@19#.
One such set is made up of infinitesimal rotations about th
linearly independent axes. Consider axesu1 , u2, andu3 that
are obtained fromu by rotationsg(1,p/2), g(2,p/2), and
g(3,p/2) about each one of the coordinate axes by an
p/2. The correspondng infinitesimal rotations are given
@18#, g(uı ,e)5g(ı,p/2)g(u,e)g21(ı,p/2). This concludes
the proof for three dimensions.

We now prove by induction that for any elementg(ı,a)
of the rotation about planeı by anglea of the rotation
groupSO(N), there exists an elementg of groupHN that lies
arbitrarily close to it, forN>3. By hypothesis, anyg(ı,a),
for ı,51,2, . . . ,N can be approximated by an elementg of
HN . We show now thatg(ı N11,a), for ı51,2, . . . ,N, can
also be approximated by elements ofHN11. We take g
PHN within distancee of gı(a). Now, since rotations pre
serve distances, it follows thatg(ı N11,a)PSO(N11),
given by g(ı N11,a)5g(ı N11,p/2)g(ı,a)g21(ı N
11,p/2) is within distancee of g8PHN11, given by g8
5g(ı N11,p/2)gg21(ı N11,p/2). This proves dense cov
erage inN>3 dimensions. This is a kind of stochastic ge
eralization of Jacobi’s theorem@15# to more than two dimen-
sions.

To conclude the proof thatPn(v)→constant in the n
→` limit, consider any two pointsV and U8 as centers of
disksD(V) andD(U8), both of radiusr, in SN21. Since the
system’s orbit coversSN21 densely forN>3, it follows that
a point U that is related toV exists arbitrarily close toU8.
Consider now two equal size disksD(V) andD(U). The fact
that there exists at least one sequence of rotations inHN that
takeV into U implies that there exists a rotationg in HN that
transformsV into U. Since g is a rotation, it transforms
D(V) rigidly into D(U). It follows that *D(V)dv
Pn(v)↔*D(U)du Pn(u) asn→`. Sincer is arbitrary, andV
and U8 are any two points inSN21, it follows that P(v) is



r

te

i

w

-
. 2
-
e.

f

all

10
e

-
es
m

ach

of

-

PRE 60 3363ALGORITHM FOR NORMAL RANDOM NUMBERS
constant overSN21 ~except, perhaps, on a set of measu
zero!. Ergodicity follows@15#.

The desired result follows easily. Let the single regis
PDF p(v) be the n→` limit of pn(v), where pn(v1)
5*Pn(v) dv2dv3 , . . . ,dvN . SincePn(v)→constantas n
→`, it follows that

p~v !}S 12
v2

N D (N23)/2

. ~3.4!

Clearly, p(v)→C exp(2v2/2) in the N→` limit, which is
the desired result.

IV. NUMERICAL TESTS

We next address the following practical issues:~i! how
good an approximation to a Gaussian PDF of PRN’s
achieved with a necessarilyfinite set ofN registers,~ii ! how
long must the initial warm-up phase be,~iii ! period length,
and ~iv! what correlations, if any, are found numerically.

A. Distribution

Frequencies of events from sequences of 106, 108, and
1010 PRN’s generated with transformation~2.1!–~2.3!, with
N51024, are exhibited in Fig. 1. In order to determine ho
much PDF’s obtained for finiteN deviate from the desired
Gaussian distribution, it is convenient to rewrite Eq.~3.4! as
follows,

p~v !}e2v2/2egN(v)/N, ~4.1!

where gN(v)5v2(32v2/2)/21O(1/N). N21gN(v) is ap-
proximately the fractional deviation,dp(v)/p(v), from
Gaussian form ifdp(v)/p(v)!1. We have checked this be
havior numerically. The results obtained are shown in Fig
Clearly, thenumber of registers Nthat must be used in
creases with the numberM of PRN’s one intends to generat
This is because the value of the largest PRN generated
creases, on the average, withM. More precisely, the value o
v beyond which PRN’s are only generated with probabilityq
is approximately given byv2'2ln(M/vq). Now, it follows
from Eq.~4.1! that the fractional errordP/P in the probabil-
ity density atv is approximatelyN21v2(32v2/2)/2 for very
largeN. ~It is pointless to require this error to be too sm
since a PRN is expected to be generated beyondx with a

FIG. 1. Numbern(v) of PRN’s generated withinv2Dv/2 and
v1Dv/2, for Dv50.1. Data points shown asd, h, andj, follow
from sequences of 1.931010, 1.83108, and 23106 PRN’s, respec-
tively.
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small probability q.! It then follows that @ ln(M/qv)#2

&NdP/P must be satisfied byN. Thus, approximately 104

registers are sufficient in order to generate as many as15

PRN’s, with roughly a 10% error in the probability for th
largestPRN in the sequence.

B. Warmup

Our algorithm must be applied a numbernpN of times
before it is ready for use unless allv ı are initialized
with ‘‘equilibrium’’ values ~stored from some previous com
puter run!. The distribution of all register values then evolv
towards equilibrium, as illustrated in Fig. 3. Deviations fro
equilibrium are statistically insignificant fornp*2 and N
51024, and fornp*4 andN51 048 576. Sincenp is ex-
pected to increase as lnN, np58 should provide ample
warmup for any foreseeable applications.

C. Recurrence

The number of PRN’s that must be generated before e
PRN in sequencev1 ,v2 , . . . ,vN returns within distancer
from its initial value is exponential inN. More specifically,
we estimate it to be (t/AN)(1/r )N for N@1, wheret is the
period of the algorithm used to selectı and  in Eq. ~2.1!.
The estimation is based onPn(v)→constantover SN21 as
n→`. We have numerically checked this for small values

FIG. 2. gN , defined in Eq.~4.1!, versusx. The full line is for the
zeroth order term@see below Eq.~4.1!# in a 1/N expansion. Data
points shown asj, s, andd are forN58, 32, and 512, respec
tively.

FIG. 3. Numbern(v) of PRN’s within v2Dv/2 andv1Dv/2,
for Dv50.1, starting from initial conditionsv ı51, for all ı
P@1,N#, after transformation~2.1!–~2.3! are iterated 2npN times
~that is, after each register interacts, on the average, 2np times!. The
h andl stand fornp52,10, respectively, forN51024. TheL,
d, and s stand for np52,4, and 10, respectively, forN
51 048 576. The two straight lines stand forC exp(2v2/2) for two
values ofC.
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N. Thus, an effectively infinite recurrence time follows f
any reasonably large value ofN.

D. Correlations

Correlations between a finite number of PRN’s clea
vanish asN→`, sinceı and  in Eq. ~2.1! are supposedly
independent PRN’s. We have searched for correlations im
succesively generated PRN’sv1 ,v2 , . . . vm , for m
53,4, . . . ,6,performing a chi-square isotropy test over t
corresponding m-dimensional space. An m-tuple v
5v1 ,v2 , . . . ,vm was said to belong to thei th cone of 1024
randomly oriented cones with axesw1 ,w2 , . . . ,w1024, if
0.99<v–wı<1. No significant deviations from isotropy wer
observed for 106 generatedm tuples.

Implementation of Wolff’s algorithm@20# in MC calcula-
tions of the Ising model’s critical behavior is a demandi
test that some well-known uniform PRN generators ha
failed @3#. Large clusters are then flipped as a whole, and
tests correlations in very long sequences. We have used
mal PRN’s generated by our algorithm as input into a M
simulation of an Ising system of 16316 spins at the critica
temperature.@For that, we note thatv ı

21v 
2.2x as often as

u.exp(2x) if v ı andv  ~u! are PRN’s with Gaussian~uni-
form! PDF’s, respectively.# The energy obtained is shown i
Fig. 4 as a function of the number of registersN. The fol-
lowing uniform PRN algorithms were used to selectı and
in Eq. ~2.1!: GGL @3#, R(250,103,XOR) @2,3#, andRAN3 @21#.

FIG. 4. Average energy per spin, obtained from MC simulatio
using Wolff’s algorithm, versus the inverse of the number of reg
ters used for the generation of PRN’s with Gaussian PDF’s. Thed,
j, andn stand for data points that follow from feeding our alg
rithm with the following uniform PRN generators:GGL, R~250,103,
XOR), and RAN3, respectively. Unacceptable energy values t
have been obtained in Refs.@3# using R(250,103,XOR), and RAN3

are also shown as bars next to they axis.
se
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We tried the latter two algorithms, which have been sho
to lead by themselves to unacceptable results for the Is
model @3#, in order to test our algorithm’s robustness. T
results shown in Fig. 4 are gratifying.

Similarly, the specific heatc and magnetizationm fluctua-
tions data points obtained follow approximately the relatio
c.c018.4/N, and^(dm)2&.x0133/N, respectively, where
c051.497(1) andx050.5454(2), in agreement with the
known exact values@3,22#.

V. CONCLUSIONS

Double precision is recommended. It prevents excess
drift of the sum(v ı

2 away from its assigned value. Eve
then, single precision accuracy is to be expected at the en
a sequence of some 1016 PRN’s, unless the sum is norma
ized several times during the run.

In summary, we have shown that implementation of E
~2.1!–~2.3! provides a source of PRN’s with an approx
mately Gaussian PDF. Some 104 registers~molecules! are
sufficient for some purposes, but up to 105 or more may be
necessary for more demanding tasks.~Having to make a de-
cision about the number of registers to be used may so
times be an unwelcomed task. On the other hand, it i
virtue of the algorithm that one can control, through t
value ofN, how close the output is to be from sequences
truly independent random numbers with Gaussian PDF!
Initial warmups for arbitrary initial conditions are necessa
it is sufficient to let each register initially interact an avera
number of, say, eight times. The system’s recurrence t
was shown to be exponential inN, and therefore effectively
infinite. Its behavior appears to be robust. The proposed
gorithm runs an order of magnitude faster on computers t
the most often used Box-Muller method@8,9#. For a fortran
code of our algorithm or other questions, please wr
JFF@Pipe.Unizar.Es.
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